为了弄清这一过程为什么能成功运作,泰格马克和林决定换个角度看问题。
-
自然界中的亚原子法则非常简单,而描述一只蜜蜂飞行的路线所需的等式则极为复杂,描述气体分子运动的等式则要简单一些。目前我们还不清楚深度学习能否像描述气体分子的运动规律一样,描述出复杂的蜜蜂飞行路线。
-
去年,人工智能完成了一项很多人认为不可能成功的任务:谷歌的深度学习人工智能系统DeepMind打败了世界上最厉害的围棋玩家。这使全世界为之震惊,因为围棋所有可能的走法种类甚至超过了宇宙中原子数量的总和,之前的下围棋机器人只能达到普通人类棋手的水准。
-
研究发现,神经网络的计算过程之所以能大大简化,还要归功于宇宙中的几条特殊性质。泰格马克指出,其中第一条就是,从量子力学到引力、再到狭义相对论,主宰着这些物理法则的等式其实只是简单的数学问题而已。
转载请注明出处。